LOW-ERROR MAP PROJECTIONS FOR PAN-EUROPEAN EQUAL-AREA MAPPING
Frank Canters
Cartography and GIS Unit, Department of Geography

Vrije Universiteit Brussel

Pleinlaan 2, B 1050 Brussels, Belgium

E-mail: fcanters@vub.ac.be

Abstract

In 1997, this author proposed a series of low-error equal-area map projections for the EU which at that time counted 15 member states. Instead of using the traditional least-squares approach, and minimizing local scale error, the selection of optimal map projection parameters was based on reducing the distortion of a large number of finite distances spread randomly over the area of the EU. In this paper, a similar approach has been taken for developing new, low-error transformations of the azimuthal equal-area projection for the European Union, based on present EU boundary definitions. However, instead of using the average distortion of distance as the sole criterion for parameter optimization, maximum scale error along the boundaries of the EU was taken into consideration as well. Distortion characteristics of the low-error map projections obtained are discussed in detail based on error statistics and maps showing the spatial distribution of distortion.
Introduction

The widespread use of geographical information technology and the establishment of spatial databases at sub-continental to global scales have promoted new interest in map projection issues. While for most applications at the local up to the national level the reference system that is used for the official topographic mapping of a country’s territory can be adopted, the problem of map projection selection will usually present itself when data from different countries have to be integrated into a common reference system. The demand for a continuous coverage of a large area, consisting of various adjacent or non-adjacent countries, may lead to a substantial geometrical distortion near the extremities of the area. As such, the use of standard map projections may be insufficient to meet the error conditions one is willing to accept. 
Spatial data integration is a key issue in the development of geographical databases for the European Union (EU). In the 80s the British cartographer Derek Maling was asked to propose a suitable map projection for CORINE (Co-ordinated Information on the European Environment), the EU’s 1:100000 environmental database (Maling 1992, pp. 256-62). Considering the actual use of CORINE, an equal-area projection was considered the most appropriate for storage and continuous mapping of the EU at the 1:100000 scale. Using a combination of graphical and analytical methods (overlay of isocols on an atlas map of the area, and calculation of distortion values for selected points), Maling determined the optimal aspect and other projection parameters for various standard equal-area projections, and compared distortion characteristics for the limiting extremities on each projection. Based on Maling’s analysis an azimuthal equal-area projection, with centre at 48°N, 9°E proved to be the best choice for the mapping of the EU, which at that time consisted of 12 member states. 
Over the last 15 years the outline of the EU changed considerably. Since Finland and Sweden joined the EU in 1993, the circular distortion pattern of the azimuthal equal-area projection no longer matches the shape of the EU well. A close look at a map of Europe shows that the present EU with its 27 member states has rather irregular boundaries and lacks compactness. The overall shape of the area more or less approximates a spherical triangle which shows a slight eastward inclination with respect to the direction of the meridians. Notwithstanding the successive changes that took place in the outline of the EU, the oblique azimuthal equal-area projection is still used as a reference for equal-area mapping. A few years ago, the European Commission adopted a series of map projection coordinate reference systems based on the outcome of two EU workshops organized in 1999 and 2000 (Annoni et al. 2003). For pan-European statistical mapping at all scales, as well as for other purposes where true representation of areas is required, the ellipsoidal version of the azimuthal equal-area projection, based on ETRS89 coordinates, has been adopted as standard European Coordinate Reference System (ECRS). Compared to the previous version of the azimuthal equal-area projection the centre was slightly shifted to the northeast (52°N, 10°E) to accommodate the present outline of the EU. 

In 1997, Canters and De Genst proposed a series of low-error equal-area map projections for the EU which at that time counted 15 member states. Instead of using the traditional least-squares approach, and minimizing local scale error, the selection of optimal map projection parameters was based on reducing the distortion of a large number of finite distances spread randomly over the area of the EU. A polynomial transformation was proposed transforming the graticule of the azimuthal equal-area projection so that its distortion pattern better fits the general outline of the EU. The proposed transformation reduced the average distortion of distance to less than half the value obtained with the azimuthal equal-area projection, while maintaining the equal-area property of the projection (Canters and De Genst 1997, Canters 2002). In this paper a similar approach has been taken for developing new, low-error transformations of the azimuthal equal-area projection for the European Union, based on present EU boundary definitions. However, instead of using the average distortion of distance as the sole criterion for parameter optimization, maximum scale error along the boundaries of the EU was taken into consideration as well. 
Error-reducing transformations of map projections
The suitability of a map projection for the mapping of a particular area largely depends on how well the distortion pattern of the projection matches the overall shape of the area to be mapped. Azimuthal projections with their radial distortion pattern are mostly used for the mapping of areas that extend more or less equally in all directions, while cylindrical projections are preferred for areas that extend along a great circle. Conical projections are used for the mapping of areas with limited latitudinal extent or, occasionally, in oblique aspect, for areas that are positioned along an arbitrarily oriented small circle. Parts of a map that are located far away from the point or line(s) of zero distortion of the chosen map projection will be distorted.  For areas of (sub-)continental size distortion at the extremities of the area may be substantial, especially if the overall shape of the area does not match any of the typical distortion patterns of standard map projections. 
One way to reduce map projection distortion is to transform the geometry of a map projection in such a way that the projection’s distortion pattern better fits the overall shape of the area to be mapped. In 1856, Chebyshev stated that a conformal projection has the least possible overall distortion if the region to be mapped is bounded by a line of constant scale (Snyder 1993, p. 140). In the second half of the 20th century several authors developed low-error conformal graticules by adapting the shape of the isocols of standard conformal map projections to surround the region to be mapped, using a complex-algebra polynomial transformation proposed by Driencourt and Laborde (1932, p. 202). The idea of applying polynomial transformations to adapt map projection distortion patterns to the area to be mapped can also be applied to non-conformal projections. Already in 1974 Tobler proposed a simple affine transformation with inverse expansion and compression along both co-ordinate axes to modify the distortion properties of standard equal-area projections:
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Applied to the oblique azimuthal equal-area projection, this simple transformation changes the circular isocols of the projection into ovals, which can be given an arbitrary orientation by simple rotation of the co-ordinate axes prior to the transformation. A good choice of the affine coefficient and a proper orientation of the axes will lead to less variation of scale and angular distortion for elongated areas, while the equal-area property of the original projection is maintained (Tobler 1974). By generalizing this approach using higher-order polynomials a more flexible adjustment of the distortion pattern, and thus a better limitation of error for regions of arbitrary size and shape can be attained.

Maintenance of the equal-area property requires the definition of polynomial equations that satisfy the general condition for an equal-area transformation in the plane:
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(2)
From (2) two simple solutions can be derived:
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and
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The first transformation is symmetric about the X-axis and preserves the proportional scaling along the y-axis in the original projection. Straight lines parallel to the Y-axis remain straight since X is a function of x only. The second transformation is symmetric about the Y-axis and does not alter the relative spacing along the x-axis. Straight lines parallel to the X-axis remain straight. By putting
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two polynomial transformations are obtained that do not alter the area distortion pattern of the original graticule, each with its own geometric properties (see above), and with n coefficients to be optimized. A higher level of flexibility is obtained by combining (3) and (4) into one transformation with 2n coefficients:
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with X and Y as in (3) (Canters 1991). When applied to an equal-area map projection, a new equal-area graticule is obtained, its distortion pattern determined by the choice of the 2n coefficients. Rotation of the coordinate axes x, y of the original projection over an angle  prior to applying (6) further increases the flexibility of the transformation and its potential to adapt the distortion pattern of the projection to the area to be mapped. 
Defining a suitable distortion metric

Optimizing the 2n + 1 coefficients of the equal-area transformation proposed in the previous section requires the definition of a suitable distortion metric describing the distortion that occurs within the area to be mapped. The optimal set of coefficients values will be the one that minimizes the distortion criterion defined.  The traditional method of calculating an estimate of the amount of distortion present in a map projection is to divide the area to be mapped into a large number of small plots, calculate the value of a local measure of distortion for the midpoint of each plot, and average the obtained values, using the area of each plot as a weight factor. An alternative approach, emphasizing the cumulative effect of scale distortion over finite-sized distances and in different directions, is to randomly generate a large set of distances connecting point locations within the area to be mapped, define a suitable distortion measure to describe the distortion of each distance after it has been projected on the map, and then calculate an average value of this measure for the entire set. Many studies on finite map projection distortion have focused on defining proper measures to quantify the overall distortion of distance and/or to define new map projections with low or with minimum distortion of distance (Gilbert 1974, Peters 1975, Tobler 1977, Albinus 1981, Canters 1989, Laskowski 1998).  In this study the following distortion measure was used:
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with si the distance between two positions on the globe, and s’i the corresponding distance on the map. The metric has the property that only the relative distortion of distance is taken into account, not the absolute difference in distance, so that short and large distances equally contribute to the average distortion value. The distortion calculated for each distance is also equal for enlargements and reductions by the same factor, meaning for example that in the calculation of the average distortion of distance equal weight is given to distances that are doubled in size and to distances that are reduced to half of their original size. The value of es,i can be converted into a corresponding scale factor ks,i (= distortion of a distance of unit length) as follows:
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The value of ks,i was averaged over 10000 distances ranging between 0° and 30° in arc length, their beginning and end points randomly chosen within the boundaries of the EU:
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(9)
While optimization of the parameters of the polynomial transformation defined by (3), (5) and (6), using the average distortion of m (=10000) finite distances as the criterion for optimization, will produce map projections with low overall distortion of distance, these projections will not necessarily guarantee a low maximum scale error along the boundaries of the area to be mapped. To avoid extreme distortion along the boundaries of the EU the distortion criterion (9) was modified as follows:
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with Ks the average value of the scale factor describing the distortion of distance (see equation (9)) and  amax the maximum value of the local scale factor (i.e. half the length of the long axis of Tissot’s indicatrix), measured for a set of locations at the extremities of the EU.
Results and discussion

Optimizing the position of the centre of the azimuthal equal-area projection based on the average distortion of distance throughout the EU (equation (9)) produces a graticule with centre close to 50°N, 11°E and a mean relative error in distance (Ks-1)x100 of 0.25%. The local scale factor along the boundaries of the EU reaches a maximum value in the south-east (Cyprus).  The maximum scale error (amax-1)x100 attains a value of 1.93%.
Starting with the optimized version of the oblique azimuthal equal-area projection, various low-error equal-area transformations defined by equations (3), (5) and (6) where obtained by choosing polynomials of different order (2nd to 4th order), and minimizing the average distortion of distance, with or without taking maximum scale error along the boundaries of the EU into account, using either (9) or (10) as the criterion for optimization. As shown in table 1, unconstrained optimization allows us to reduce the relative error in distance for the azimuthal equal-area projection to two-third of its original value (0.25% for the original azimuthal projection, 0.16% for a fourth-order polynomial transformation). Maximum scale error along the boundaries of the EU is the lowest for the second order transformation (figure 1, left). As can be observed, the distortion pattern for the second-order transformation matches the overall shape of the EU quite well. Increasing the order of the polynomial allows us to further reduce the average distortion of distance.  However, the increased flexibility of the transformation results in a stronger variation in scale error along the EU boundaries in the case of unconstrained optimization (table 1, figure 2, left).

Table 1: Relative error in distance (%) and maximum local scale error (%) for various low-error transformations of the oblique azimuthal equal-area projection for maps of the European Union
	Type of transformation
	Unconstrained scenario
	Constrained scenario

	
	(Ks-1)x100 (%)
	(amax-1)x100 (%)
	(Ks-1)x100 (%)
	(amax-1)x100 (%)

	No transformation (original projection)
	0.2476
	1.9344
	0.2476
	1.9344

	Second-order transformation
	0.2080
	1.2723
	0.2112
	1.1802

	Third-order transformation
	0.1815
	2.3240
	0.1966
	1.0971

	Fourth-order transformation
	0.1582
	2.0867
	0.1962
	1.0892


Optimizing the coefficients of the polynomial transformation, taking scale error along the boundaries into account (constrained optimization), leads to smaller reductions in the distortion of distance. The distortion pattern of the projection, however, will better fit the overall shape of the region, leading to less extreme distortion along the boundaries. Comparing the distortion patterns obtained for a third-order transformation for both scenarios (figure 2) clearly shows how taking scale distortion along the extremities of the region into account constrains the distortion pattern of the projection and makes it follow the outlines of the EU more closely. As can be observed, increasing the order of the polynomial reduces both the average distortion of distance and the maximum scale error at the extremities (table 1). It is clear, however, that the major reduction in distortion is already obtained with a second-order transformation. Increasing the order of the polynomials leads to a further reduction of distortion, yet the relative gain in accuracy is limited. The reason for this is that a second-order transformation already enables us to produce a distortion pattern that approximates the general outline of the EU quite well (figure 1, right). A further increase of the complexity of the transformation only leads to small additional improvements (figure 2, right). 
[image: image16.png]



Figure 1: Second-order low-error transformation of the oblique azimuthal equal-area projection
for the European Union, with lines of constant maximum scale error (%): unconstrained optimization (left),
constrained optimization (right)
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Figure 2: Third-order low-error transformation of the oblique azimuthal equal-area projection
for the European Union, with lines of constant maximum scale error (%): unconstrained optimization (left),
constrained optimization (right)
Conclusion

In this paper several low-error transformations of the azimuthal equal-area projection have been presented for equal-area mapping of the European Union. The results show that application of simple equal-area transformations of the polynomial type may lead to a substantial reduction of overall distortion for areas with complicated boundaries that do not match the regular distortion patterns of standard map projections. A procedure has been proposed to reduce the relative distortion of distance, while at the same time limiting the maximum scale error along the extremities of the area to be mapped. While the distortion that occurs within the boundaries of the EU on a standard equal-area projection may not be an issue for small-scale statistical mapping, reducing the error may be important if the projection is used as a equal-area coordinate system for GIS applications, especially at larger scales. Although the examples shown in this paper are all based on a spherical model of the Earth, the procedure can be generalised to the non-spherical case by calculating distances between locations on the ellipsoid instead of on the sphere and by using the ellipsoidal version of the azimuthal equal-area projection as the starting point for optimization.
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